
)
NASA-TM-IIlSI2

Intelligent Validation and Routing of Electronic

Forms in a Distributed Work Flow Environment

MICHAEL COMPTON

SHAWN WOLFE

RECOM TECHNOLOGIES, INC.

ARTIFICIAL INTELLIGENCE RESEARCH BRANCH

NASA AMES RESEARCH CENTER

MAIL STOP 269-2

IV[OFFETT FIELD, CA 94035-1000

NASA Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-93-31

October, 1993





Intelligent Validation and Routing of Electronic Forms in a Distributed

Workflow Environment -

Michael M. Compton

compton@ptolemy.arc.nasa.gov; (415) 604-6776

Shawn Wolfe

shawn@ptolemy.arc.nasa.gov; (415) 604-4760

Recom Technologies, Inc.

Artificial Intelligence Research Branch
NASA Ames Research Center, M/S 269-2

Moffett Field, CA 94035-1000

This paper describes a knowledge-based system for improving the efficiency of

automated workflow systems by 1) ensuring the correctness and completeness of

data contained on forms that are originated and transmitted electronically, and 2)

generating an electronic "routing slip" that reflects who must approve the form.

The system uses a form-independent validation engine and form-specific

constraints to check that electronic forms are filled out correctly. If no errors are

detected during validation, the system uses information on the form to generate a

list of individuals and/or organizations that must approve it. This "approval path"

information is added to the form so that it can be automatically routed from one

approver to the next. The system is implemented in CLIPS and currently runs on

Macintosh computers. It communicates with an off-the-shelf electronic forms

package via AppleScript TM and can operate within the Apple Open Collaboration

Environment (AOCETM), which supports a variety of other workflow capabilities

including digital signatures, system-level electronic mail, and data encryption. The

system has successfully validated and generated approval paths for approximately

ten different types of forms, and is easily extended to new forms via a

"BUILDCLASS" facility that automatically generates the CLIPS code necessary to

represent _nd reason about the new form.

AI Topic:
Domain area:

Language/Tool:
Status:

Effort:

Impact:

knowledge-based systems

electronic forms, workflow automation -

CLIPS, Informed, AppleScript, AOCE

Initial prototype complete, and being evaluated in the

context of a site-wide workflow application

Approximately 2 person-years of effort have been

expended to-date

Elimination of incorrect, incomplete, or incorrectly-routed

forms is estimated to save tens of thousands of dollars per

year in wasted effort.

To be presented at the Tenth IEEE Conference on Artificial Intelligence for Applications (CAIA-94) in San Antoino, TX
in March 1994.



Background

The Ames Acquisition Division processes tens of thousands of purchase requests

(PRs) each year. These PRs, which can be used for anything from procurement of

computing equipment and laboratory instruments to allocation of funds for

university grants, must be approved by anywhere from five to twenty people before

they can be processed. More than half of these PRs need to be returned to the

originator because they are incorrect or incomplete. Even when the PRs are filled

out correctly, it's often unclear to the originator exactly who needs to approve a

particular PR, and it is likely to be sent on to the wrong person. As a result, even a

properly completed purchase request can take a very long time to get processed.

In 1991, the Artificial Intelligence Research Branch at NASA's Ames Research

Center undertook an effort to determine whether AI technology could be applied to

the validation and routing of an electronic purchase request. With assistance from

the Information Systems Branch and the University Affairs Branch, development

began on the Prototype Electronic Purchase Request (PEPR) system. The initial

application of this system was to the PRs and associated evaluation forms that must

be processed in order to fund external research through university grants. These

types of PRs were chosen because of their relatively simple validation and routing

requirements, and the fact that automation of this process would be of immediate

value to the organizations involved. The system is now being extended to cover

"small purchase" PRs, which require more complicated validation and more

diverse approval paths.

Project Goals

In order to properly evaluate the suitability of knowledge-based technology to the

validation and routing of electronic forms it was necessary to provide several other

components of an automated workflow environment; namely, a high-fidelity

rendering of the forms themselves, and an electronic mail system to transmit forms

between users. It was also very important that these various software modules be

able to communicate with each other as easily as possible, with little or no assistance
from the u_er.

Our overall objectives were as follows:

• to'develop a knowledge-based system that can

a) ensure that an electronic form is correct and complete,

b) generate an "approval path" that shows who needs to approve

the form based on its content, and

c) interact "invisibly" with other components of an automated

workflow system;

• focus on the Ames Purchase Request form (ARC31), but also be

more generally applicable to other forms (i.e. minimize the system's

dependence on a specific type of form); and

• provide enough of a complete end-user environment (electronic

forms, electronic mail, etc.) to permit reasonable evaluation of the

knowledge-based component.

-2-



Approach
The PEPR system is comprised of a commercial electronic forms package and a

knowledge based system that contains validation and routing rules that apply to the

forms being supported. These two programs are closely integrated through the use

of a scripting language that enables the two applications to pass data back and forth.

This scripting language not only allows seamless integration of the forms software

and the knowledge-based system, but also allows future inclusion of other

components of a total workflow solution (such as digital signatures and electronic

mail). Figure 1 shows the overall system structure.

Electronic Form

I ScriptingLanguage

Other Work'flow Services:
E-mail

user authentication
digital signatures

form revision management
cross-platform access

Validation
Module

Classification
Module

Path Generation
Module

Approver "data base"

Utility Roulines

Knowledge Base

Figure 1 - The Overall Structure of the PEPR System

Electronic Forms Package

Because it is the primary user interface for our system, we wanted the forms

package to

* electronically represent complex forms with high fidelity to the

paper version;

* provide support for arithmetic calculations;

• require minimal system resources for the forms and the application; and

• provide very fast response time.

We chose the Informed TM package (from Shana Corporation) to represent the

forms electronically. The Informed product consists of two main programs. A forms

-3-



design program, called Informed Designer, allows the forms designer to define the

layout of the form, the appearance and behavior of data fields, and other aspects of

the forms behavior. The "fill application" is called Informed Manager, and allows

end-users to fill out the forms, print them, and/or mail them to other users.

Informed not only meets all of the criteria outlined above, but also has built-in

support for communication with a variety of commercial data bases and permits the

embedding of scripts. Figure 2 shows an example electronic Ames PR form.

I¢

I

I

I

1

I

Figure 2 - The Ames Purchase Request Form

Expert System Shell

Our requirements for the tool with which to construct the knowledge base were

reasonably well-defined:

• that it be "commercial quality" (i.e. robus0

• that it support the data-driven or "forward chaining" paradigm that

we thought was best suited to the task;

• that it support an object-oriented programming style to maximize

the reusability of the knowledge base;

• that it run reasonably quickly and require a minimum amount of

system resources to run;

-4-



• that it be easy to integrate with the other tools (and customize, if

necessary); and

• that it be readily available.

The "C Language Integrated Production System" (CLIPS) best fit our needs for

the project. CLIPS was developed by the Software Technology Branch at NASA's

Johnson Space Center (and was derived from the forward chaining component of a

very successful commercial expert system shell). The fact that CLIPS comes with its

source code enabled us to extend it to support Apple Events (the inter-program

messaging facility that is built in to the Macintosh operating system with System 7).

We also made CLIPS "scriptable" so that it could be controlled remotely and easily

share data with the forms package.

Integrating the Knowledge Base with the Forms Package

One of the most important goals of our system was that the CLIPS module be as

"seamlessly" integrated with the other modules as possible. That is, we wanted the

knowledge-based system's operation to be invisible to the user and have its output

(the validation errors and the routing path) displayed to the user on the form itself.

The initial version of our system used a popular "keyboard macro" package to

integrate the electronic forms and the knowledge base. By typing a single keystroke

from within the forms application, the macro would cause the system to export the

form's data to a disk file, switch to the knowledge system, read in the data from the

exported file, analyze it, and print out the results of the analysis in the CLIPS "dialog

window". While this approach worked, it had some serious drawbacks. First,

because the keyboard macro simply simulated a user's input, the user had to watch a

series of dialog boxes and simulated typing and menu commands as the macro

executed. Second, the output of the knowledge based system was not easily returned

to the forms application, and could only be printed out on the screen by CLIPS. Most

importantly, however, was that integration by means of the keyboard macro package

required that both applications be running on the user's computer. This meant that

to actually-put the system in front of real users would have required each user to be

running their own copy of CLIPS and have the latest version of the knowledge base.

This approach, of course, would have presented considerable maintenance
headache_

The current version of our system uses AppleScript, a newly-released scripting

language for the Macintosh. It allows the two applications to communicate almost

invisibly, and also allows the error messages or routing information to be inserted

directly into the form itself. With the error messages contained in a field on the

form, it becomes much easier for the user to correct the associated errors. When the

list of required approvers for a particular form is contained in a field on the form, it

is possible for an electronic mail system to automatically route the form to the

proper people. Perhaps the greatest advantage, however, is that AppleScript can be

used to control applications across an AppleTalk network. This enabled us to put a

single copy of the CLIPS system on a centralized "server" machine, and allow

-5-



remote users to check forms that reside on their own computer, without requiring
them to have their own copy of the knowledge-based system. This capability not
only makes maintenance of the system much easier, but also allows the system to
keep an accurate log of the validation or routing requests it receives. Figure 3 shows
an example fragment of AppleScript code. (Note that this example AppleScript code

is considerably simpler than that actually used in the PEPR system; it's included here

merely as an illustration of how Informed and CLI_ can share data through the use

of AppleScrip0.

Example script _]----

JF.zLmple script for linking Informed Irtd CLIPS._c 8/4/93 M
Record $_op Run Check Syntax

-- geteeoes_wj d_etafrom form
tell application "1hformed rlah_er""

cop1 Cell "Originator" te origYer
cop1 Cell "D_cri ption" te |teml)escYer
cepg Cell "Total Cost" te costYar

old tell

- - ¢_e, te CL/PS ob),_ on remote machine a_ vah;da_ _,t

tell eppl|cetion "CLIPS" ef m4chi ne "Server PEPR" ef zone "FI 2/N269"
do script "(Irmke-irmtence current-form of FORH (orio "& origYer -,

& "} (idesc "& itemDescYsr & ") {cost "-,
& co,_tYer & "))"

_t errorsVer to eva] irate "(velidete)"
eml tell

Figure 3 - An example of AppleScript (viewed in the Script Editor)

Knowledge Base Structure

The knowledge-based component of the PEPR system is comprised of three

modules; a validation module, a classification module, and an approval path

generation module. Invocation of the latter two modules is dependent on the

success of the first. That is, if the form contains validation errors, the system does

not attemptto categorize the PR or generate an approval path.

The PEPR knowledge base makes extensive use of the CLIPS object system. All

the major elements of the knowledge base (forms, constraints, errors, warnings,

paths, organizations, people) are represented as objects. This approach enables the

system to be extended (either in response for requirements for increased

-6-



functionality or support of new forms) by defining new specialized subclasses that

inherit much of their functionality. The following is the (partial) class definition

for the ARC31 form. Each slot corresponds to a field on the form. Fields that

correspond to "table elements" on the form are represented as "multiple value"

slots in the class definition. To facilitate the sharing of data between the forms

package and the knowledge base, the slot names coincide exactly with the names of
the fields on the form.

(defclass arc31 (is-a FORM)

(concrete)

(slot FORMTYPE)

(slot ADPS IG)

(slot ADPS IGDATE)

(slot AMOUNT (multiple))

(slot APPROPRIATION)

(slot BRANCHS IG)

(slot BRANCHS IGDATE)

(slot BRIEFDESC)

(slot BUYERS INIT)

)

Not all of the data entered onto the form is actually sent to CLIPS. Only the data

from those fields that are referenced in the validation constraints (or routing rules)

is required for the PEPR knowledge base to reason about the form.

Figure 4 shows the class structure of the PEPR knowledge base. The ORG class

and its subclasses are used to represent the organizational structure at Ames.

Instances of these classes (and their corresponding PERSON instances) are used in

the construction of the approval paths. The ERROR and CONSTRAINT classes

(and their subclasses) are used during form validation. Subclasses of the FORM

object are-instantiated and used throughout the knowledge base. The CLUE, PATH,

and HYPOTHESIS classes are used to classify the data on the form prior to

generatioffof the approval path (these objects are described in more detail in the

sections that follow).

The greyed classes were added to support non-NASA-forms used for other

purposes in the pilot environment.

-7-



PEPRClass Structure

Figure 4 - The PEPR Class Structure

Validation Module

A completed form is considered "valid" if none of the constraints that are

applicable to that form type are violated when applied to the form. When

validation begins, the knowledge base creates an instance of the form being

validated,--collects values from all of the constrained fields on the form, and sets its

instance's slots accordingly.

The following is a simple example of a constraint that reports an error when the
user enter_ a value in a field that should be left blank:

([no-py-fields] of shaded-constraint

(form arc31)

(fields PY)

(msg "No PY fields should be filled in."))

There are currently seven constraint subclasses, each of which has its own

"apply" method that is executed during validation. In addition to these "error

constraints", there are three types of "warning constraints" that can generate

messages for the user but do not inhibit subsequent generation of an approval path.

For instance, one page of the ARC31 (not shown) has a table of checkboxes with

which the user can attempt to classify the items being ordered. When an apparent

-8-



inconsistency between the user's classification and the system's classification is
identified, the user is presented with a warning messageand can then decide
whether to fix the inconsistency or proceed. Allowing these "soft" constraints

allows the system to point out an apparent discrepancy without unduly limiting the

user's intent. In the future, the system will support a "user-context" feature, which

will allow constraints to be applicable only for a certain type of user (e.g., the

originator) and not for another (e.g., a subsequent approver). This will allow the

knowledge base to be applied differently for different types of users.

Classification Module

If the form is valid, the system invokes the classification module which

determines whether the line items on the PR cause it to fall into any "special"

categories. The system scans the description fields on the PR and compares them

with the appropriate "due" strings for each category. If a match is found, the system

notes the "hypothesis" associated with that clue and records the level of belief

associated with that clue. PEPR uses a certainty factor calculus derived from that of

the MYCIN system, and can use the presence of a clue to indicate either a positive or

negative belief that the corresponding hypothesis holds (i.e. that the PR falls into the

associated category). This CF calculus dictates how evidence resulting from multiple

clues is to be combined, and allows both for "positive" (supportive) clues and

"negative" (refutive) clues with respect to a particular hypothesis. For example, the

following clue indicates that the word "macintosh", when found in the BRIEFDESC

field of the PR, indicates that the PR is for ADP equipment with a certainty factor of
90.

([arc31:ADP:BRIEFDESC:I4] of CLUE

(field BRIEFDESC)

(clue "macintosh" )

(cf 90) )

An instance of the CLUE class is created for each keyword to be searched for in a

particular-field. Currently, the knowledge base designer must define all the sets of

HYPOTHESIS and corresponding CLUE instances for a form (although we are

beginning-to investigate the applicability of machine learning techniques to this

knowledgeacquisition problem).

The following example HYPOTHES IS reflects the (abbreviated) collection of clues

that are applicable to the ARC31 form and can be evaluated-to determine whether

the PR is for ADP (automatic data processing) equipment.

([arc31:ADP] of HYPOTHESIS

(form arc31)

(hypothesis "ADP" )

(total I)

(clues [arc31 :ADP :DESCRIPTION :17 ]

[arc31 :ADP :DESCRIPTION: 15] . ..

[arc31:ADP:DESCRIPTION:I6]

))

An instance of the HYPOTHES IS class is defined for each possible special category of

PR. These categories or not mutually exclusive, so any given PR may belong to
more than one.

-9-



Classification of the form proceeds in a straightforward manner. PEPR iterates

through the HYPOTHESIS instances, searching for each relevant keyword, and

updating the measure of belief for the current HYPOTHESI S if the keyword is found.

When this process is completed, a belief is asserted for each HYPOTHESIS instance
that meets a minimum belief criterion.

Path Generation Module

Approvals that are required for an ARC31 form fall into two categories:

management approvals and special approvals. Management approvals reflect the

structure of the organization and the position of the originating organization

therein. Special approvals are those that are required for particular types of items,

regardless of who is ordering them.

At Ames, the ARC31 requires approval from each level in the management

chain, from the originating organization up to through the Directorate above the

originating organization. Depending upon the types of materials being ordered, the

ARC31 may also need to be approved by a variety of spedal approvers. Finally, the

form must be routed to the Purchase Control Unit, which is the ultimate recipient

of all ARC31 forms generated at the Center.

Although ultimately represented as a single list of approvers, the approval path

for an ARC31 is constructed from three distinct parts. The first part is a list of initial

approvers. Each initial approver is either defined relative to the originating

organization or is the same for all organizations. This list is sequential, for approval

must follow a predetermined order. The next part is determined by the

classification of the form. Depending upon how the form was classified (and in

some cases the total dollar amount of the form), certain organizations will have to

approve it. The process of adding these approvers is nondeterministic, and indeed

the approvals could occur in parallel since none of these "special approvals" are

dependent upon the others (however, we currently represent these approvers

sequentially). The final approver is the recipient organization, which must be the

last organization to approve the form (in the case of the ARC31, the Procurement

Control Unit is always the final approver).

GeneraHon of the approval path is determined by form-specific facts in the PEPR

knowledge base. Since the initial approvers and the final approver are dependent

upon the classification of the form, and since it is important to maintain their order,

we use a single fact to represent them. This fact has a component that is a list of

references which constitute the initial approvers, and another component

containing a reference to the recipient organization. Each reference is either a

pointer to a particular organization's object or a token that defines an organization

with respect to the originating organization (e.g., DIRECTORATE, which would

refer to the directorate that originating organization is in).

The special approvals that a PR requires need not occur in any particular order.

Therefore, no ordering rules are applied to the special approvers (except that they

must fall between the initial approvers and the recipient organization). Several

facts can be used to represent the special approver information and the CLIPS

pattern matching algorithm can add these approvers randomly to the list. Each

special approver fact has three parts: a part that names the categorization to which

-10-



they are applicable, a reference to the special approver organization, and an optional

additional test (for example, a test to see if the dollar amount on the PR is over a
certain limit).

Figure 5 shows an example routing slip for the Ames PR form (note that in this

example, the form has already been sent to the first three approvers).

i_ BRC31 (1.41)5) ,i

ROUTI NG SLIP Appr_va.! is r_ from the following

, .Sm_l._,¢_tion S_iex_,Dflrm...)

Y,m.i_ (C.,,m,,_tiu o;,_ti.m Bno_)

D(inEhffeich MidSendTo [

FarmOd_ed By:. I [
._ :_ichae] Compton Recipie_lOrgw_zMim:

Procurement Control UnitI _ InrJdllg_l_e_tch_'a._.h

,F-. I -- '"' II'l_l I_

Figure 5 - An Electronic "Routing Slip" for the Ames PR Form

Applying PEPR to Other Forms

The PEPR system maintains form-specific data structures that enable it to

validate and generate approval paths for several electronic forms. For the ARC31

form, these structures were hand-coded. To facilitate the application of the PEPR

system to new forms, tools were developed that automate the procedures by which

these CLIPS structures are generated. These procedures allow the new data

structures to be created directly from the forms themselves. This has dramatically

reduced the time required to adapt the PEPR system to new forms (from hours to

seconds).

-11 -



The "BUILDCI_SS' Facility

PEPR's representation of a form consists of a CLIPS class .definition that includes

a slot for every field on the form. The "BUILDCLASS" facility takes advantage of

the fact that Informed Manager can export data from a form to a disk file in what is

known as "merge format". In this format, the names of the fields are written to the

file along with the data they contain. In order to have a new class definition

generated automatically, the knowledge base developer need only export an empty

form in merge format. This permits the BUILDCLASS module to read in the field

names as if they were data; only instead of using this information to fill in the slots

of a previously-defined form instance, it is used to build a "defclass" data structure

that can then be saved in a knowledge base file and used later when a form of that

type is to be validated.

The "MAKECT' Facility

It can also be time-consuming to hand-code the CLIPS objects that comprise the

validation constraints. Just as the BUILDCLASS facility can be used to automatically

construct the class definitions, the MAKECT facility can be used to automatically

construct constraint definitions.

The knowledge base designer uses the MAKECT facility by filling out the form to

be checked with various codes in the fields to be constrained. For example, putting a

single character "R' in a text field will cause a "required" constraint to be generated.

Likewise, putting an'S' in a "shaded" field will generate a constraint indicating that

a field should not be filled in by an end user. Similar codes have been defined for

other fields on the form that can only accept numbers or dates. The knowledge base

designer can also specify whether certain fields should be validated separately or

collectively.

Once the proper codes are entered onto the form and exported to a disk file, the

MAKECT facility reads in the file, parses it, and generates the proper CLIPS source

code to represent the constraints.

Current Status

The PEPR system is currently being evaluated with respect to its usability in a

production environment at NASA Ames. The knowledge base for the ARC31 form

is being refined to conform to recent modifications in the Ames procurement

processes, and later this year the system will be tested by-real users within the

Aerospace Systems Directorate.

With the upcoming release of Apple's Open Collaboration Environment (AOCE,

due in the fall of 1993), the approval paths generated by the PEPR system will be

used to directly control the routing of the forms through the approval process.

Because AOCE also supports digital signatures and system-level access to electronic

mail (among other services), the PEPR system will be functioning in a true
distributedworkflow environment.

Future Plans

There are three main areas in which we hope to be able to improve the PEPR

system's functionality.

- 12-



First, we want to determine whether machine learning techniques can be used to

improve the classification module by automatically acquiring new knowledge about

how to classify line items on a PR with respect to the special approvals they require.

Currently these classification clues and hypotheses are hand-coded, and an

automated approach to acquiring this knowledge could help improve the system's

classification capability with minimal manual maintenance. We are also studying

the issues involved with acquiring some types of classification heuristics directly

from the end users of the system.

Second, we want to reduce the system's dependence on its internal data base of

approvers and organizations. This type of data is much better suited to a more

conventional data base that can be maintained externally to the knowledge base.

Third, we are studying ways by which the knowledge system can help the user

correct errors that are identified during validation. This would involve

augmenting the system's representation of error types with repair strategies that can

automatically be pursued if the user indicates that he or she wants help with

correcting the problems reported by the PEPR validation module.

We also are interested in applying the PEPR architecture to other types of

workflow problems in other domains (and on other platforms), and are actively

investigating several potential areas of application.

-13-



References

[1] Compton, M., Stewart, H., Tabibzadeh, S., Hastings, B. 1992 Intelligent purchase

request system, NASA Ames Research Center Tech. Rep. FIA-92-07

[2] Shortliffe, E. H. 1976 Computer-based medical consultations: MYCIN. New York:
American Elsevier.

[3] Hermens, L.A., Schlimmer, J.C. 1993 Applying machine learning to electronic

form filling. Proceedings of the SPIE Applications of AI: Machine Vision and
Robotics

-14-






